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Abstract—Recent advances in big data and deep learning

technologies have enabled researchers across many disciplines

to gain new insight into large and complex data. For example,

deep neural networks are being widely used to analyze various

types of data including images, videos, texts, and time-series data.

In another example, various disciplines such as sociology, social

work, and criminology are analyzing crowd-sourced and online

social network data using big data technologies to gain new

insight from a plethora of data. Even though many different types

of data are being generated and analyzed in various domains,

the development of distributed city-level cyberinfrastructure for

effectively integrating them to get more value and insight is not

well-addressed in the research literature. In this paper, we present

our current efforts and ultimate vision to build distributed

cyberinfrastructure that integrates big data and deep learning

technologies with a variety of data for enhancing public safety

and livability in cites. We also introduce several methodologies

and applications that we are developing on top of the cyberin-

frastructure to support diverse community stakeholders in cities.

I. INTRODUCTION

According to a report published in 2016 by the United
Nations, about 60% of the global population will live in cities
by 2030, and about half of them will live in cities with half
a million inhabitants or more [1]. An overwhelming portion
of the urban population lives in mega-cities, which have a
population of 10 million or more. Such cities are susceptible
to natural disasters and violent crime, and consequently their
inhabitants live in the risk of economic losses and bodily
damages. Moreover, as cities continue to grow, access to
essential services such as health care, education, housing,
transportation, and law enforcement becomes increasingly
challenging. In particular, crime and traffic congestion become
common and critical issues in many large cities. As the size
of city population increases, the rates of violent crime and the
traffic congestion index have soared while overall crime rates
remain similar compared to previous years [2].

As the population of modern cities increases, the cities
start to generate huge amounts of data from diverse sources
such as IoT (Internet of Things) sensors, remote cameras,

social media (e.g., Twitter), crowd-sourcing platforms (e.g.,
Waze), and interactive kiosks. These heterogeneous data are
then shared and analyzed for better governance and efficient
resource utilization for communities. Management and analy-
sis of such a huge volume of structured and unstructured data
requires not only cutting-edge hardware running state-of-the-
art big data frameworks but also machine learning and artificial
intelligence tools that are at the forefront of innovation.

For example, Chicago Mayor’s Office and the Chicago Po-
lice Department (CPD) deployed new predictive technologies
and analytical tools to reduce gun violence. After deploying
a predictive platform equipped with integrated, geographic-
specific, real-time analytics for crime data, video surveillance,
and gunshot detection, one district in Chicago saw a nearly
60% reduction in the number of shooting incidents [3]. Such
new data and technologies will drive modern cities into smart
environments by enhancing public safety and livability of
residents.

Among the new technologies, deep learning is one of
the newest and fastest growing classes of new techniques,
and deep learning has been under active development since
its resurgence in 2006 [4]. Backed by the advancements in
specialized hardware accelerators, deep learning has enabled
various fields of study to analyze and receive more insight into
complex data such as images, videos, social media, and texts.
Although these fields are still being actively investigated, most
current research efforts focus on individual problems, lacking
an holistic and integrative approach.

While the transformation driven by new data and tech-
nologies shows great promise for improved well-being and
prosperity, there are still significant challenges between society
and technology. To tackle the challenges of a smart city,
it is critical to integrate the different sources of informa-
tion and gain insight into them in a comprehensive fash-
ion. Furthermore, since deep learning models are extremely
compute-intensive to train and data-intensive to run inferences
on streaming videos and texts, we need an environment
that juxtaposes big data technologies with traditional high-



ICDCS 2018, 2018, Vienna, Austria

Fig. 1: Cyberinfrastructure Overview

performance computing (HPC) augmented by state-of-the-art

hardware accelerators.

In this paper, we present our current efforts and ultimate

vision to build distributed cyberinfrastructure that integrates

big data and deep learning technologies with a variety of

data for enhancing public safety and livability in cites. We

also introduce several techniques and applications that we are

developing on top of the cyberinfrastructure to support various

community stakeholders in cities.

The rest of the paper is organized as follows. In Section II,

we introduce the overview of our cyberinfrastructure that con-

sists of multiple layers. Next, we describe our methodologies

in Section III and applications that we are developing on top

of the cyberinfrastructure in Section IV. Lastly, we conclude

this paper with our future research directions in Section V.

II. CYBERINFRASTRUCTURE OVERVIEW

In this section, we introduce the architecture of our cyber-

infrastructure that consists of four layers as shown in Fig. 1.

The data layer has various types of structured and unstructured

raw data that we analyze, annotate, and index for data mining

and visualization purposes. The data types include traffic and

surveillance videos, crowd-sourced data, online social network

data, and government data. The hardware layer comprises

of hardware components for gathering various types of raw

data, training and running our analytical models, and storing

transformed data for future analytics. The hardware compo-

nents include edge devices equipped with sensors and cameras,

temporary storage servers for raw data, analysis servers for

training and running our models, and long-term storage servers

for annotated data. The software layer consists of the software

tools and frameworks that we use to store and analyze the data

in the data layer. The layer combines various big data tools

to stream and store huge amounts of raw data, deep learning

frameworks to train models and run inferences for annotating

the raw data, and visualization tools. The application layer

includes various real-world applications and services that we

are building for smart cities. The three bottom layers are

Fig. 2: DOTD camera map in Baton Rouge

described in greater detail in the following subsections while

we introduce the application layer in Section IV.

A. Data Layer

Our cyberinfrastructure is designed to manage heteroge-

neous types of data generated from various devices and

domains. We currently focus on four types including videos,

social network data, public records, and law enforcement data.

1) Traffic and Surveillance Videos: Our cyberinfrastructure

receives live video feeds from cameras of the Louisiana

Department of Transportation and Development (DOTD) and

the City of Baton Rouge for not only real-time traffic and

public safety analysis but also queryable data transforma-

tion for future data analytics. The DOTD cameras are in-

stalled along major highways covering several big and mid-

sized cities including New Orleans, Baton Rouge, Houma,

Shreveport, Lafayette, North Shore, Lake Charles, Monroe,

and Alexandria. By connecting to the DOTD network, our

cyberinfrastructure can access more than 200 cameras, which

constantly provide live feeds from highways across the state

of Louisiana. Fig. 2 shows DOTD camera locations in Baton

Rouge, the capital of Louisiana.

2) Online Social Networks and Crowd-Sourced Data:
Online social networks, such as Twitter and Facebook, pro-

vide invaluable information not only for scientists in various

disciplines but also for government officials including law

enforcement and homeland security agents. Using a cluster of

machines, our cyberinfrastructure collects tweets via Twitter

API based on specific keywords and geospatial coordinates.

Users can easily add new keywords and locations to gather

tweets of interest. Moreover, through a collaboration with

social, environmental, and political scientists, our cyberinfras-

tructure stores comprehensive tweet datasets for some major

natural disasters. In addition to online social network data, our

cyberinfrastructure collects data from Waze, the world’s largest

crowdsourcing-based traffic and navigation application, to help

city officials make better decisions in terms of the city traffic

management and emergency responses. Through the Waze’s

Connected Citizens Program (CCP), we store and analyze

real-time traffic information including system-generated traffic

jams and user-reported traffic incidents.

2
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Fig. 3: Fog computing model

3) Community Public Data: Open data for cities has be-

come an important trend for better transparency and potentially

transformative data analytics [5]. The city of Baton Rouge,

with whom we are collaborating to build a smarter city,

provides this resource, which allows us the ability to store and

use this information in a collaborative manner. The open data

is comprised of, among others, public safety information (e.g.,

crime incidents, fire incidents, medical clinics), housing and

development information (e.g., census demographics, building

permits), government information (e.g., citizen requests for

services, public facilities, purchase orders), and transportation

and infrastructure information (e.g., traffic incidents, potholes,

traffic signals). As new types of data become available, these

will can also be incorporated in to the process.
4) Law Enforcement Data: In addition to the public data,

our cyberinfrastructure analyzes law enforcement data that

include sensitive information. A memorandum of understand-

ing between LSU (Louisiana State University) and law en-

forcement agencies in Baton Rouge has allowed monthly

transfer of individual-level violent crime data, including data

on homicides, robberies, aggravated assaults, and illegal use

of a weapon, from law enforcement agencies. The data sent

each month includes incident report numbers, offense descrip-

tion, Louisiana criminal offense code, report address, offense

district, date and time of the offense, law enforcement agency

responsible for the report, and the names and demographic

information on all persons involved (both victims and sus-

pects) including home address and role in the incident. The

crime data are uploaded to a secure LSU web server through a

unique URL address by agencies after the first of each month.

Files uploaded to the secure web server are deleted after 90

days.

B. Hardware Layer

1) Computing: Our cyberinfrastructure is based on a fog

computing model consisting of four tiers as shown in Fig. 3.

The lowest tier is made up of edge devices, such as smart-

phones and Raspberry PIs (credit card-sized computers), that

are responsible for collecting data from sensors and cameras

and sending them upstream. Since these edge devices possess

network connectivity and usually contain limited computation

power and storage capacity, they can be used to perform

elementary data filtering to reduce network communication

to the higher tiers. They also act as buffers when transferring

data from stateless devices to long-term storage servers in the

cloud.

The next tier consists of fog nodes that are embedded

devices such as NVIDIA Jetson. Each of these devices is

responsible for aggregating data from a set of edge devices

and sending them upstream for further analysis and storage.

Since fog nodes are more powerful than edge devices, they

are capable of performing more advanced operations on the

raw data. For example, we utilize fog nodes to run inferences

using the first few layers of a deep learning model. When the

fog nodes are confident about their inference results, only the

annotated data is sent upstream for long-term storage and data

mining. Otherwise, the raw data is sent upstream for further

analysis.

The third tier includes analysis servers that are standalone

nodes with modest to high processing power and in charge

of handling compute-intensive tasks such as training deep

learning models and running inferences on raw data using all

layers of the trained model. Each analysis server handles a

set of fog nodes and receives data from them in one of two

forms: 1) the raw data when the fog nodes are not confident

about their preprocessing results and 2) the data annotated by

the fog nodes. After analysis on the analysis servers, the data

is sent upstream for further processing.

The top tier is a federated cloud that consists of public cloud

services (e.g., Amazon Web Services, Microsoft Azure, IBM

Cloud) and open research infrastructures (e.g., GENI (Global

Environment for Network Innovations), XSEDE (Extreme

Science and Engineering Discovery Environment), Emulab).

This tier fetches annotated data from analysis servers and

stores it in distributed file systems (or database systems) for

large-scale data mining and visualization.

2) Storage: The federated cloud in the top tier of our cy-

berinfrastructure contains short- and long-term storage subsys-

tems in the public clouds as well as HPC data centers. These

subsystems can be in the form of a distributed file system (e.g.,

Lustre, Hadoop Distributed File System (HDFS)) or a sharded

NoSQL database systems (e.g., HBase, MongoDB).

3) Networking: The federated cloud in the top tier of our

cyberinfrastructure is connected to the other three tiers by

Internet2, a member-owned nationwide high-speed network

backbone consisting of educational and research institutions,

government agencies, and leading corporations. Moreover, the

three bottom tiers are interconnected by high-speed regional

networks such as Louisiana Optical Network Infrastructure

(LONI), which is available for use by academic, government,

and industry partners in collaboration with LONI participant

institutions.

C. Software Layer

1) Deep Learning: Recent remarkable advances in deep

learning, exemplified with excellent success in image recog-

nition, speech recognition, and natural language processing,

have garnered a great deal of interest for a wide range of ap-

plications [6], [7], [8]. Backed by the advancements in special-

3
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ized hardware accelerators [9], deep learning techniques have
continued to thrive in various domains and disciplines [10],
[11], [12], [13], [14]. To support deep learning-based analytics
for smart city applications, our cyberinfrastructure uses Ten-
sorFlow because it provides model and data parallelism and
can be easily distributed among multiple nodes and multiple
workers per node.

2) Big Data Management: To store and analyze the large-
scale data generated from various sources in a scalable and
efficient manner, our cyberinfrastructure integrates various
big data frameworks. First, we use Hadoop Distributed File
System (HDFS), a distributed file system running on top of
a cluster of machines, to store large-scale datasets. HDFS
provides reliability and availability by replicating data blocks
across multiple machines so, even though some machines
may fail, we can still access the data stored in HDFS. On
top of HDFS, we use Apache Hadoop YARN and Apache
Spark as the resource scheduler and distributed data processing
engine respectively. In addition, to gather data from legacy
database systems, we utilize Apache Sqoop, a data import tool
for bulk data transfers between RDBMSs (relational database
management systems) and HDFS. For real-time data gathering,
we use Apache Flume, a data import tool for real-time data
transfers from various information sources.

For efficient query processing from huge amounts of het-
erogeneous data, we utilize various types of NoSQL database
systems including HBase and MongoDB. Apache HBase is a
distributed NoSQL database system running on top of HDFS.
We can categorize HBase as a wide-column store or two-
dimensional key/value store. Unlike HDFS that is optimized
only for batch-style data access, HBase supports efficient
random read/write operations. MongoDB is a document-based
NoSQL database system optimized for storing unstructured or
semi-structured documents such as JSON data. MongoDB is
equipped with various indexing techniques for efficient query
processing on various data types. Our cyberinfrastructure also
supports other types of analytical workloads such as streaming
processing, geospatial processing, and graph-based process-
ing [15], [16], [17], [18].

3) Data Mining and Visualization: In addition to deep
learning-based analytics, our cyberinfrastructure provides tra-
ditional machine learning and data mining capability for
structured and annotated data. We utilize various distributed
data mining tools including Apache Spark MLlib. Moreover,
our cyberinfrastructure provides visualization capability for
displaying both raw and analyzed data in an interactive way.
We currently utilize the D3 JavaScript visualization library for
visualizing our data.

III. METHODOLOGIES

In this section, we explain our methodologies that we use
in developing our analysis models on top of the cyberinfras-
tructure. Our methodologies include a number of machine
learning, in particular, deep neural network modules. The
modules serve as building blocks that can be configured
and combined together to construct our analysis models. The

models are then used in the application layer to perform
various analysis tasks, as described in Section IV.

A. Spatial Analysis

In spatial analysis, we aim to discover spatial patterns in the
data such as patterns in images and geospatial patterns (e.g.,
patterns of criminal activity locations). We develop a collection
of Convolutional Neural Network (CNN) modules for spatial
analysis in our cyberinfrastructure. Through the convolutional
operation, a neuron in a CNN generates responses to local
spatial patterns at different locations. The set of activities
produced by the neuron scanning through the image gives
rise to a feature map. A CNN may consist of multiple layers,
where the feature maps from a lower layer serve as input to
a higher layer. Such a network forms a hierarchy, in which
large spatial patterns (i.e., receptive fields of neurons at higher
layers) can be constructed from smaller one (i.e., receptive
fields of those in the lower layers). CNN-based networks
have shown great success in many image-processing tasks,
from classification and object recognition to medical image
diagnosis. Our CNN modules enable highly effective analysis
in our cyberinfrastructure.

We can also conduct spatial analysis using CNN beyond
image data. For example, in DeepMind’s AlphaGo, CNN is
used to analyze the positions of the stones on the GO game
board. There are plenty of scenarios in our cyberinfrastructure
that deal with geospatial data. Examples include traffic con-
gestion, criminal activities, and economic development levels
at different locations. Such data can be viewed as geospatial
”images” and analyzed using CNNs. Our collection of CNN
modules include a number of CNN variants. Besides the
regular CNNs, we also include inception type of CNN as used
in the GoogleNet and the ResNet type of CNN. The variants
will allow the applications to try and employ the CNNs that
are most suitable for the scenarios.

B. Temporal Analysis

Temporal analysis is the process of analyzing and discover-
ing temporal patterns in the data. To support temporal analysis
in our cyberinfrastructure, we develop a collection of Recur-
rent Neural Network (RNN) modules. Many researchers have
shown success using RNNs on different types of sequential
data, from natural language understanding to action recogni-
tion. A specific type of RNNs that we include is the Long-
Short-Term Memory (LSTM) network. LSTM’s capability of
discovering long-range correlations is particularly useful for
time series. Our application layer includes behavior analysis,
which involves patterns of actions along time. LSTM networks
serve as important modules in such an analysis. The RNN
modules can also be used in analysis of many sequential data
that do not concern time, such as text data that are sequences
of words. Our cyberinfrastructure deals with large amounts
of text data from social media and other sources. Our RNN
modules will enable effective text processing.

4
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C. Multi-Modal Analysis

Community challenges are often perpetuated by the large
number of disconnected sources of information from both
people and technology. While the goals may be the same for
all interested parties, they are not able to work together in a
meaningful way to produce a solution. To address the chal-
lenges, we develop multi-modal analysis that learns features
and makes decisions by combining and fusing information
of multiple modals, such as video (image data) and sound
(audio data) for gun shots. It has been demonstrated in many
learning situations that combining data from multiple modals
can greatly increase the performance of a learning system [10].
Our cyberinfrastructure includes components for multi-modal
fusion and analysis. One approach we implement is fusion
based on deep auto-encoders. The encoders generate features
that combine information from multiple channels. Another
analysis that we include is canonical correlation analysis
(CCA) [19].

D. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL), the paradigm of learning by
trial-and-error, has been an essential framework for robotics,
control systems, and AI research domains for many decades.
Overcoming previous limitations for RL applications, mostly
associated with fundamental challenges in high-dimensional
data and model complexity, DRL opens a way to solve major
roadblocks for its potential for a diverse set of AI applica-
tions [20], [21], [22], [23]. By leveraging the recent advances
in DRL, human-level video tracking and incident reasoning,
combinations of audio and video signals for control systems,
and sequential decision-making systems using human percep-
tion data (e.g., audio, video, text) are achievable and can be
more advanced. Our cyberinfrastructure includes components
for deep reinforcement learning to develop various smart city
applications, such as smart camera controls to automatically
rotate and zoom in for traffic and crime incidents.

IV. APPLICATIONS

In this section, we introduce our applications that we
are developing on top of the cyberinfrastructure using the
methodologies explained in Section III.

A. Video Analysis-Based Applications

Compared to image data, video data contain richer type of
information for objects, such as their contextual time-series
information. Therefore, analyzing video data can not only
give us more accurate reconstruction of past events such as
crime and traffic incidents but also allow us to predict critical
events in the near future. Despite of many potential benefits
from video analysis, it is known to be difficult because of the
huge size and complexity of streaming video data. By tackling
the challenge based on the fog computing model described in
Section II, we are developing various types of video analysis-
based smart city applications as follows.
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Fig. 4: Deep learning architecture for vehicle detection and
classification

Fig. 5: Vehicle detection and classification examples

1) Vehicle Detection and Classification: Identifying details
of vehicles (e.g., make, model, year, color) from video streams
can be critical when tracking cars that are involved in criminal
activities (e.g., tracking cars described in AMBER Alerts).
Such analysis is time-consuming and error-prone if manually
conducted by humans. To address this challenge, we are
developing an application with a deep learning model, which
can detect cars and classify them into the detailed vehicle
information, for streaming video data. We use the Stanford
car dataset [24] and our own crawled images from Google
for common car models in the United States to train our
current model. The combined dataset has 32,000 images for
400 classes. In our current prototype system, we use the Tiny
YOLO (You Only Look Once) and YOLOv2 models [25]
because YOLO provides fast and accurate detection and clas-
sification. We first run Tiny YOLO on local devices (i.e., edge
devices or fog nodes). If the score of the classification is
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Fig. 6: Deep learning architecture for suspicious behavior and
crime action recognition

higher than a predefined threshold, the output of Tiny YOLO
is considered as an acceptable outcome. Otherwise, the feature
map obtained before the branch is sent to the analysis server in
which it goes through the remaining YOLOv2 layers to obtain
the object’s bounding box and its predicted class. Fig. 4 shows
our prototype deep learning architecture for vehicle detection
and classification, divided between the local device and the
analysis server. Fig. 5 demonstrates the vehicle detection and
classification results using our prototype system.

2) Suspicious Behavior and Crime Action Recognition:
Recognizing abnormal (or concerned) actions and behaviors
from video streams is critical in smart cities because they
may be related to criminal actions (e.g., jaywalking, hit-and-
run events, armed robbery). Given that actions and behaviors
involve a time dimension, we are developing an application
for action and behavior recognition by combining both CNN
and RNN modules. Fig. 6 shows our prototype deep learning
architecture for suspicious behavior and crime action recogni-
tion, divided between the local device and the analysis server.
Our CNN module, a stack of multiple ResNet [26] blocks,
is responsible to analyze activities within each frame in a
video stream and transform a frame into a representation
of activity features. Fig. 7 shows our current ResNet block
architecture used in this application. At each time step t,
the CNN module processes the frame with time stamp t
and outputs a representation for that frame. The sequence of
the CNN’s outputs along time will serve as the input to the
RNN module, which consists of multiple LSTM layers. The
LSTM layers extract temporal patterns along the per-time step
activity representations. A final classifier, composed of one or
more fully connected layers, takes the temporal patterns and
generate recognition decisions.

To run the application based on the fog computing model
described in Section II, we first execute ResNet block 1 with
LSTM 1 and FC1 on the local device (i.e., edge devices or
fog nodes). If the entropy score of Output 1 (i.e., classification
result) is higher than a predefined threshold, we index the
video using Output 1 on the local device. Otherwise, the
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Fig. 7: ResNet block architecture for suspicious behavior and
crime action recognition

feature map obtained by ResNet block 1 is sent to the analysis
server in which it goes through the remaining network to
obtain Output 2. We then index the video using Output 2 on
the analysis server.

We train the model using previously recorded videos from
the city’s street and traffic cameras. We split the videos into
clips of several minutes long and label them into different
categories of suspicious behaviors and crime activities with
the help of experts. Once the model is trained, it can be
deployed to monitor video streams from several street and
traffic cameras. When a suspicious behavior or crime activity
is recognized, our application will log the time, location, the
type of activity, and the video feed during that time window
into a database. An alert will be sent to a human operator
who reviews the information and the original video clip, and
forwards the information to the authorities if needed.

B. Social Network Analysis-Based Applications

Social network analytic techniques are used by law en-
forcement to uncover the social relationships that interconnect
violent offenders and criminal group members. By uncovering
the social connections of a victim or suspect, law enforcement
can focus their investigations on individuals with whom a
person is known to have a relationship history (either through
conflict or collaboration). Social network relationships are
detected by identifying first-degree associates, individuals who
are linked in place and time through criminal incident reports
and/or through known gang or group affiliations. While this
approach is useful for monitoring violent group and gang-
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related activity, and can prove fruitful for uncovering leads to
informants, witnesses, and co-offenders involved in a partic-
ular criminal event, the sphere of social connectivity can be
exhaustively large for timely investigation.

For example, of the 67 groups and gangs and their 982
members identified and observed in Baton Rouge over the
past 6 years, the average gang member has a network size
of 14 first-degree associates. However, best-practices suggest
that investigative techniques extend to second-degree affiliates
as well (i.e., a relationship connection through a shared co-
offender). This approach can yield a field of interest that
contains close to 200 second-degree associates. These numbers
are prohibitively large for an under-resourced staff of law
enforcement to investigate.

To address this challenge, we are developing a hybrid
deep model that captures the temporal and textual features
of criminal and gang networks, using their tweets and deep
learning and natural language processing techniques. First,
we identify their Twitter IDs of the first and second degree
associates of criminal and gang members. Next, we use natural
language processing to capture the textual features present
in Tweet text at given times and locations associated with a
violent criminal incident. Using a multi-modal algorithm, we
integrate those information to determine whether a tweet from
a criminal or gang associate falls within the specified time
and location field of interest. The advantage of using multi-
modal model is to triangulate event location, time, and social
relationship across complex and extensive volumes of data.

By combining the expansive field of second-degree asso-
ciates with the geo-targeted tweets during the timeframe of
a violent incident, the field of associates can be strategically
narrowed to known associates who were in the location of a
criminal incident at the time of the event. This layering of data
can provide a tighter focus around a much smaller persons-
of-interest field for investigation, and thus result in a more
efficient use of law enforcement resources.

V. CONCLUSION

In this paper, we present our current efforts and ultimate
vision to build distributed cyberinfrastructure that integrates
big data and deep learning technologies with a variety of data
for enhancing public safety and livability in cites. We also
introduce several methodologies and applications that we are
developing on top of the cyberinfrastructure to support diverse
community stakeholders in cities.

In addition to the aforementioned methodologies and appli-
cations, we plan to continuously extend our cyberinfrastructure
in close collaboration with community stakeholders to conduct
integrative research that transforms existing distributed com-
puting capabilities in enhancing community well-being. One
of our future research directions is integrating health care-
related data, such as medical history and radiology images,
into our cyberinfrastructure to support the transformation of
health and medicine in cities. Through a MOU (Memorandum
of Understanding) between LSU and several medical schools
and centers in Louisiana, we started collecting anonymized

medical data into our cyberinfrastructure. In this integrative
research, we aim to address various types of challenges
including not only technical challenges such as big medical
data management and scalable distributed computing but also
legal and ethical challenges such as HIPAA(Health Insurance
Portability and Accountability Act)-compliant data storage and
processing.

One critical health care-related problem that we are par-
ticularly interested in is the opioid epidemic in the United
States. According to the U.S. Department of Health and
Human Services, 116 people died every day from opioid-
related drug overdoses in 2016 [27]. Deep learning-based
analytics using our cyberinfrastructure may uncover additional
factors that explain why opioid mortality rates are at epidemic
levels. Data sources that we plan to analyze include, but not
limited to, social network analysis, online social networks
(e.g., Twitter, Facebook), the number of opioid prescriptions
in Baton Rouge, traffic volume/DOTD data, drug-related ac-
tivities in community, substance use-related crime arrests,
locations of overdoses, 911 calls, and community knowledge
(e.g., residents, law enforcement, coroner).
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